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This work describes a practical strategy used at Pharmacia for identifying compounds for follow-
up screening following an initial HTS campaign against targets where no 3-D structural
information is available and preliminary SAR models do not exist. The approach explicitly
takes into account different representations of chemistry space and identifies compounds for
follow-up screening that are likely to provide the best overall coverage of the chemistry spaces
considered. Specifically, the work employs hit-directed nearest-neighbor (HDNN) searching of
compound databases based upon a set of “probe compounds” obtained as hits in the preliminary
high-throughput screens. Four different molecular representations that generate nearly unique
chemistry spaces are used. The representations include 3-D, 2-D, 2-D topological BCUTs (2-
DT) and molecular fingerprints derived from substructural fragments. In the case of the BCUT
representations the NN searching is distance based, while in the case of molecular fingerprints
a similarity-based measure is used. Generally, the results obtained differ significantly among
all four methods, that is, the sets of NN compounds have surprisingly little overlap. Moreover,
in all of the four chemistry space representations, a minimum of 3- to 4-fold enrichment in
actives over random screening is observed even though the actives identified in each of the
sets of NNs are in large measure unique. These results suggest that use of multiple searches
based upon a variety of molecular representations provides an effective way of identifying more
hits in HDNN searches of chemistry spaces than can be realized with single searches.

1. Introduction

Today, the notion of performing nearest-neighbor
(NN) searches to follow-up “hits” obtained in high-
throughput screening (HTS) campaigns, so-called hit-
directed nearest-neighbor (HDNN) searching, is almost
second nature to scientists in the pharmaceutical
industry.1-5 Such NN searches can be accomplished
using either the similarities of or distances between
pairs of compounds located in a chemistry space as a
measure of their “neighborness,” namely whether a
given molecule is a NN, a next-NN, a next-next-NN, etc.,
with respect to a given probe, “seed”, or query molecule.
In contrast to many other search methods such as those
based upon substructure6 and pharmacophore7 queries,
similarity- or distance-based NN searches take a more
“subjective” approach in that they attempt to identify
molecules that are “similar to” or “close to” the query
molecule with respect to a set of molecular fragments,
or to a set of geometric, electronic, physicochemical, or
topological properties, to name a few. Moreover, de-
pending upon the representation used, either 2-D or 3-D
structural information can be encoded so that the
similarities or distances will also reflect, either implic-
itly or explicitly, features associated with the 2-D or 3-D
structures of the molecules. Comprehensive compila-
tions covering virtually all classes of descriptors now

exist.8,9 In similarity- or distance-based HDNN search-
ing there are no definitive answers as the similarity or
distance values depend on both the type of molecular
representation (vide supra) and similarity or distance
measure used.10

In HDNN searching one need not know what parts
of the molecule confer activity, as is the case in both
substructure-based and pharmacophore-based search-
ing. In both these cases a significant amount of quality
assay data is required in order to develop substructure
or pharmacophore-based models that faithfully capture
the underlying structure-activity relationships (SAR).
This is a decided disadvantage compared to HDNN
searching, which does not require such specific molec-
ular information, especially in the early phases of drug
discovery where detailed structure-activity relation-
ships are usually unavailable. Virtual screening (“high-
throughput docking”) of large, electronic compound
collections offers an alternative approach that does not
require a preliminary “structural model,” but does
require detailed 3-D structural information on both the
ligand and protein target. While some success has been
obtained in such studies, the methodology remains
problematic today.11,12

It is well-known that chemistry spaces are represen-
tation dependent.10,13 As a result, relationships among
compounds in one chemistry space are not necessarily
preserved in another chemistry space. Thus, an intrinsic
chemistry space does not exist, and this has important
consequences with regard to the distribution of com-
pounds in these spaces. For example, it is entirely
possible that clusters of compounds in one chemistry
space may become uniformly spread out in another
chemistry space and vice-versa. An important point for
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the work described here is that NN relationships may
not be the same in the different spaces.

A well-known principle that is often used in searching
for active compounds is that “similar compounds have
similar activities”.1,14 While not uniformly true, due to
the underlying differences in the nature of the activity
landscapes,15 it still holds in enough cases that similar-
ity-based HDNN searching has become a well-accepted
way of finding additional “interesting compounds” based
on a known lead, hit, or series of hits.

These confounding factors, namely that different
chemistry-space representations lead to different dis-
tributions of compounds and that significant violations
of the similarity principle occur, have led to the realiza-
tion that the quest for the best computational technique
in NN searching of compound databases may be a futile
exercise.13 Several researchers16,17 in the field have,
hence, developed and applied a variety of novel compu-
tational tools to mitigate some of these representation-
dependent and similarity or distance-biased views of
chemistry space.

In the current work a practical procedure is described
for identifying compounds for follow-up screening against
targets for which 3-D structural information and pre-
liminary SAR are unavailable. The procedure, which
was developed and used at Pharmacia over the last
several years,18 explicitly takes account of the multiplic-
ity of chemistry spaces in a way that identifies many
more active compounds than are likely to be found
searching a single chemistry space. The results reported
here, which were gathered over a period of time and in
collaboration with several therapeutic-area project teams,
tend to indicate that HDNN searching over multiple
chemistry spaces tends to select sets of compounds with
very small overlaps. In addition, it will be shown that
the enrichment of actives found in each of the chemistry
spaces is, in most instances, roughly the same, a
minimum of 3-4-fold above background for primary
HTS.

The procedure employed in this work utilizes 3-D,
2-D, and 2-D topological (2-DT) BCUTs and a fragment-
based molecular fingerprint method. BCUT descriptors
were developed in the laboratory of Professor Robert
Pearlman at the University of Texas19 and implemented
in the program DiverseSolutions (DVS),20 which is used
for the calculations reported in this work. BCUTs encode
information about the electrostatic, hydrophobic, and
hydrogen-bonding characteristics of molecules and are
defined in a manner that incorporates distance informa-
tion based upon through-bond or through-space inter-
atomic distances and atomic properties relevant to
intermolecular ligand-protein interactions. BCUTs have
been repeatedly shown to be useful as descriptors for
describing chemistry spaces.21-26 BCUT values are
calculated from matrices consisting of atomic properties
as the diagonal elements, connectivity-related properties
as the off-diagonal elements, and a scaling factor, which
balances the two types of structural information. For
example, ‘bcut_haccept_S_invdist_000.500_R_H.bdf’ re-
fers to the highest eigenvalue (H) of a matrix formed
after removing hydrogens (R), with fractional surface
area-weighted (S) h-bond-acceptor-ability (haccept) on
the diagonal and 0.5 (000.500) times the inverse-
distance (invdist) as the off-diagonal elements. Different

definitions for the off-diagonal elements differentiate
3-D from 2-D and 2-DT BCUTs. 3-D BCUTs use
through-space distances between atoms as the off-
diagonal elements, whereas 2-D BCUTs uses Burden
numbers27 as the off-diagonal elements and 2-DT BCUTs
uses topological distances as the off-diagonal elements.20

The fragment-based molecular-fingerprint method
was developed at Pharmacia,28 but is similar in ap-
proach to most molecular fingerprint methods that are
available today.6 Each compound is represented by a
320-component binary vector that contains a combina-
tion of atom and bond count information and informa-
tion on the presence or absence of substructural frag-
ments. The overall procedure has been largely automated
and was made available to the general scientific com-
munity through Pharmacia’s cheminformatic software
engine, ChemLink.28 Nearest-neighbor searches carried
out with BCUTs are based upon distance, while those
carried out with molecular fingerprints are based upon
Tanimoto similarity.6

2. Methods

2.1. General. Although references are made to the
PRCC (Pharmacia Research Compound Collection),
searches were also carried out, where appropriate, on
commercial databases of interest to therapeutic-area
project teams. Prefiltering of databases, if performed,
was based on substructural filters or property filters in
tune with our compound purchasing strategy.29 In
addition to the PRCC, ChemLink provides access to a
large variety of chemical, structural (e.g., 2-D structure,
structure alerts, etc.), and biological information related
to the entire compound collection, which includes com-
pounds for which there is no physical inventory (i.e.,
electronic structures only), compounds that are part of
combinatorial libraries, and compounds that contain
structural alerts, etc. An SDFile containing structures
of compounds with chemical inventory was generated
from ChemLink. Only the largest molecular component,
which effectively eliminated counterions, was considered
for each compound registered in the database.

2.2. BCUT Representations of Chemistry Space.
The BCUT descriptors were calculated using Diverse-
Solutions 4.0.9.20 A set of 73 standard BCUT descriptors
(29 3-D hydrogen suppressed, 18 2-D hydrogen sup-
pressed and 26 top-D (2-DT) hydrogen suppressed) were
computed. Three BCUT chemistry spaces, 3-D, 2-D, and
2-DT, respectively, that best represent the PRCC were
generated using the ø2 algorithm implemented in DVS
and used as references for all NN distance-based
searching. The chemistry spaces used in this work
include a six-dimensional 3-D BCUT chemistry space,
a five-dimensional 2-D chemistry space, and a five-
dimensional 2-DT chemistry space.30-32

2.3. Nearest-Neighbor Searching. Nearest-neigh-
bor searching can be carried out using either distance
or similarity as a means for identifying the neighboring
compounds of a specific query/probe compound. For each
given measure there are two ways to carry out the
search: (1) by identifying a fixed number of neighbors
(“number-based”) with respect to either measure or (2)
by identifying all neighbors within a given distance or
similarity (“distance- or similarity-based”) to the probe
compound. List-based searches can be applied in those
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cases where HDNN searching is carried out with respect
to more than one probe compound. Rather than search-
ing a given distance (similarity) or identifying a fixed
number of compounds with respect to each probe, list-
based searching identifies the set of compounds that are
closest (most similar) to at least one of the compounds
in the set of probe compounds (i.e., list). Thus, probes
whose NNs are far removed, a low-density situation, are
unlikely to furnish many compounds to the search set.
On the other hand, probes that are located in regions
of high-compound density will tend to contribute a
significant number of compounds to the NN search set;
such a procedure could be called “density biased.” List-
based searches can be either distance- (similarity) or
number-based.

In list-based HDNN searches carried out in BCUT
chemistry spaces with DVS, the number of compounds
obtained, nNN, typically varied from 50 to 500 depending
on the screen. In all cases reported here, receptor-
relevant subspaces33 of the respective BCUT chemistry
spaces could not be determined, as the number of well-
characterized actives was too small. Thus, “native” 3-D,
2-D, and 2-DT BCUT chemistry spaces based upon the
PRCC were used in all HDNN searches.

A list-based, density-biased procedure employing mo-
lecular fingerprints and Tanimoto similarity, as imple-
mented in ChemLink, was also used to carry out the
NN searches. The program Dfragall34 computes all
pairwise Tanimoto similarities and selects the k NNs
closest to the set of active compounds (i.e., probes).
Selections were made such that a compound was
selected if it was close to “any” of the active compounds.

2.4. Aggregation Procedures. Combining Results
from Multiple Chemistry Spaces. In both retrospec-
tive and prospective studies, different directed-screening
procedures tend to yield different subsets of active
compounds for the same biological target. Furthermore,
a given procedure tends to work better on some targets
than on others in ways that are difficult to predict a
priori. Thus, based upon a substantial amount of
screening data obtained from Pharmacia and from the
arguments advanced earlier concerning the lack of
invariance of different representations and their associ-
ated chemistry spaces,10,13 it does not appear that any
single approach to directed screening in general and to
HDNN searching in particular can unequivocally iden-
tify compounds that are similar to active compounds
obtained in screening studies. Thus, it is expected that
consensus search methods, which tend to identify com-
pounds obtained by a set of HDNN search methods, are
unlikely to be appropriate in this work. The approach
described in this paper falls under the rubric of ag-
gregation procedures. As such, it does not utilize any
data-fusion procedures such as sum-rank, mean-rank,
or best-in-N fusion,16 or consensus approaches such as
those based upon conditional probabilities35 or any
machine learning boosting algorithms.36 Rather, the
results obtained by all of the searches are simply
aggregated, a procedure akin to set-theoretical union.
This procedure provides a practical, convenient, and
rapid means, based upon HDNN searching, of identify-
ing sets of compounds for follow-up screening. As will
be seen the aggregation procedure described here is able
to locate a far greater number of different types of active

compounds from HDNN searches over multiple chem-
istry spaces than a comparable search over a single
chemistry space. This occurs partly because intersection
among the sets obtained by the various HDNN searches
tends to be quite small (vide infra), which is not entirely
surprising since, different representations can lead to
dramatically different chemistry spaces. Nonetheless,
it provides an unexpected bonus that makes aggregation
procedures worthy of further evaluation. The present
work is a preliminary attempt to carry out such an
evaluation.

2.5 Aggregation Procedures. Mathematical
Framework. The above scheme can be formulated
mathematically as follows. Consider the “universe of
compounds” U, which in the present work is the set of
compounds available for screening in the PRCC. Select
using, for example, random or diversity-based sampling,
a large subset of compounds Uh from U, where the num-
ber of compounds in Uh , given by N (Uh ), can be quite
large, on the order of 50 000-100 000 to in some cases
more than one million compounds. This constitutes the
primary screening set. The compounds in Uh are then
screened, yielding a set of actives, Uh *, where the follow-
ing subset relationship, U ⊇ Uh ⊇ Uh *, holds, although
in practice all of the subsets are proper subsets.

The background hit-rate (in percent) for Uh is given
approximately by

where N (Uh ) and N (Uh *) equal, respectively, the number
of compounds in the primary screening set and the
number of actives (“hits”) obtained in the primary
screen. Since the compounds in Uh * are the probe
molecules, N (Uh *) is also equal to the number of probe
molecules, which is the basis for the list-based HDNN
searches use here to identify compounds for follow-up
screening.

The HDNN searches are performed over the set of
compounds that were not screened previously, Uh c ) U
- Uh , where Uh c is the complement of Uh , which is
equivalent to the difference set U - Uh , that is the set
of compounds in U that are not also in Uh . This
constitutes the search set. As discussed earlier, different
representations of chemistry space yield different sub-
sets of compounds from HDNN searches carried out
with the same set of active/probe molecules, Uh *, over
the same search set, Uh c. This can be expressed as the
“NN function” fNN that maps compounds from the search
set Uh c, represented in their i-th molecular representa-
tion, into an appropriate subset Si

where nsearch is the number of HDNN searches per-
formed and the number of compounds in each of the
subsets approximately satisfies

In the examples presented in this work the subsets
Si show surprisingly little “overlap” with each other; this
means that the number of compounds in the intersection

Hbackground(Uh ) )
N (Uh *)
N (Uh )

× 100 (1)

fNN: Uh i
c f Si for i ) 1,2,3,...,nsearch (2)

N (Si) ≈ ntotal/nsearch for i ) 1,2,3,...,nsearch (3)
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of two sets is much less than the number in either of
the sets, that is

for i ) 1, 2, 3,..., nsearchand j > i. This can be generalized
to ternary and higher-order set intersections by noting
that in the case of three subsets, for example,

The subsets are then “unioned”

which ensures that all of the compounds in S are unique.
The compounds in S are then screened yielding a set of
actives S*. In analogy to eq 1, the net hit-rate (in
percent) for HDNN-based follow-up screening is given
by

and the net enrichment (in “statistical notation”) is given
by the ratio

The qualifier “net” is used to emphasize that values
computed by eqs 7 and 8 refer to sets of unique
compounds screened, S, and unique actives derived from
this set, S*.

It is possible and sometimes desirable to consider the
enrichment gained for each subset obtained by HDNN
searches. In this case, the background hit-rate remains
unchanged but eqs 7 and 8 become, respectively,

and

for i ) 1,2,3,...,nsearch. Because of the set intersections

2.6 Aggregation Procedures. Overall Scheme.
The aggregation procedure employed in this work is
based upon Scheme 1, which graphically summarizes
the overall process. Choosing the total number of
compounds to be screened, ntotal (Step 1), depends on a
number of factors such as compound availability, screen-
ing capacity and plans, needs of therapeutic-area projects,
etc. Once this choice is made, the number of HDNN
searches must be determined (Step 2), which depends
on the number and type of chemistry spaces desired for

exploration (N.B. this involves the same compound
collection represented in a number of different ways).
The HDNN searches are carried out (Step 3), and the
resulting sets of compounds are combined (Step 4) using
set-theoretic union, which ensures that the combined
set contains only unique compounds. Generally, it is
observed that the number of compounds common to two
or more sets, as measured by the ratio of the number of
compounds of their set intersections to the number of
compounds of their set unions (N.B. that this measure
is identical to the Tanimoto similarity measure used in
the molecular-fingerprint-based NN searches carried
out in this work) is surprisingly small. If the similarity
among the sets is large, additional compounds can be
added until the total number of compounds to be
screened, ntotal, is reached (Steps 5, 5a, 4, and 5). The
compounds are then screened (Step 6) and the overall
enrichment of hits is determined (Step 7).

3. Results and Discussion

3.1. General Considerations. All the results re-
ported here were gathered from active therapeutic-area
projects when the assays were actually run and do not
involve any retrospective analysis. For a variety of
experimental reasons, such as plate-to-plate assay vari-
ability, variability in the signal of the control wells,
differences in samples, solubility issues, artifacts in the
detection technique, etc., the biologists who perform a
particular assay are most likely the best informed to
assess the data. Thus, in this work the designation of
compounds as active was based solely on the judgment
of the biologists who performed the assays. This distinc-
tion is important in that many times what is considered
to be an active compound varies with who performs the
experiment and who analyzes the data. In all studies
reported here activity criteria have been applied con-
sistently for both the primary screen and the follow-up
screens.

Seven different types of assays are considered in this
work, and these include (1) a bacterial enzyme target

N (Si ∩ Sj) , N (Si) ≈ N (Sj) (4)

N (Si ∩ Sj ∩ Sk) < {N (Si ∩ Sj)
(N Si ∩ Sk)
(N Sj ∩ Sk)

(5)

S ) S1 ∪ S2 ∪ ‚‚‚ ∪ Si ∪ ‚‚‚ ∪ Snsearch
(6)

Hfollow-up(S) )
N (S*)
N (S)

× 100 (7)

E (S|Uh ) )
Hfollow-up(S)

Hbackground(Uh )
(8)

Hfollow-up(Si) )
N (Si

*)

N (Si)
× 100 (9)

E (Si|Uh ) )
Hfollow-up(Si)

Hbackground(Uh )
(10)

E (S|Uh ) e ∑
i)1

nsearch

E(Si|Uh ) (11)

Scheme 1. Aggregation Procedure. Overall Scheme
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important in the recycling of certain protein synthesis
factors, (2) a fungal enzyme target that is critical to a
lipid biosynthesis pathway and is vital to the growth
and viability of fungal cells, (3) a fungal whole cell assay
that identifies compounds toxic to fungal cells, (4) a
bacterial transporter assay that identifies compounds
that inhibit the proper functioning of the transporter,
(5) a CNS assay that characterizes the formation of
Alzheimer’s plaque, (6) a GPCR antagonist screen for
treatment of anxiety, and (7) a panel of four different
nuclear hormone receptors and several of their isoforms
assayed for agonist and antagonist activity. In addition,
the quality and type of data obtained for the assays
varies as some of the assays are ‘HTS-like’ that provide
percent inhibition values, while some are well-charac-
terized concentration-dependent kinetic assays that
provide IC50 or Ki values.

3.2. Bacterial Enzyme Target. This study provides
a prototypical example of studies of HDNN searching
and follow-up screening. In this study, an antibacterial
therapeutic-area project team had evidence that the
activity of a particular enzyme ensures the recycling of
certain key protein-synthesis factors. Inhibiting this
activity would lead to an accumulation of these factors,
thereby impairing the initiation of translation, thus
reducing the rate of protein synthesis to an extent that
is deleterious to the bacterial cell.

Based on an assay developed in-house, a HTS cam-
paign was undertaken. The compounds screened in the
initial HTS, which totaled about 30 000 compounds,
included a diverse subset of the PRCC obtained by a
dissimilarity selection protocol,34 recently purchased and
plated commercially acquired compounds, and a focused,
bacterial whole-cell active (bacteriocidal or bacterio-
static) library. After several levels of confirmatory
testing and analysis, 12 ‘well-validated hits’ were iden-
tified. The project team decided to carry out follow-up
screening based upon these ‘hits.’ About 200 compounds
were desired for the follow-up screen. Approximately 50
compounds were obtained by HDNN searches of each
of four different chemistry-space representations of the
PRCC generated, respectively, by 3-D, 2-D, and 2-DT
BCUTs and by a set of fragment-based molecular

fingerprints developed in-house.28 The search was di-
rected only toward that part of the PRCC not screened
in the initial HTS, namely Uh c. Of the nearly 200
compounds obtained by the four HDNN searches, only
132 were available for screening. Thus, N (S) ) 132, and
the number of compounds in each of the specific subsets,
is given by N (S3-D) ) 32, N (S2-D) ) 39, N (S2-DT) ) 38,
and N (SMF) ) 50, whose sum is given by N (S3-D) + N
(S2-D) + N (S2-DT) + N (SMF) ) 159. Of the compounds
available for screening, only about 10-15% were com-
mon to more than one set, which is manifested by the
near equality between the number of compounds in S
and the sum over the number in each of the individual
subsets. This is clearly a manifestation, as discussed in
Sections 1 and 2, of the fact that different molecular
representations generate different chemistry spaces
with no guarantee that NN relationships will be pre-
served.

Of the 132 compounds screened, 23 were found to be
active, that is N (S*) ) 23. From eq 7 the net hit-rate,
Hfollow-up(S), is calculated to be 17%, yielding a net
enrichment, E(S|U′), of 4.35, which is the “true” measure
of the overall enrichment obtained irrespective of over-
laps among subsets. The number of actives found in
each of the subsets is N (S3-D

* ) ) 6, N (S2-D
* ) ) 4,

N (S2-DT
* ) ) 9, and N (SMF

* ) ) 11, which sum to 30, a
number that is about 1.3 times as large as the number
of unique actives, N (S*) ) 23. This again shows that
there is no appreciable overlap among the sets of actives.
The corresponding subset and union-set hit-rates and
enrichments, which can be calculated from eqs 9 and
10, respectively, are graphically depicted in Figure 1.

From the figure it is clear that the HDNN searches
derived from HTS hits lead to measurable increases in
the hit-rate over the baseline value of four percent
observed in the primary screen, for all of the NN subsets
from a low of 10.3% to a high of 23.7%. These values
correspond to enrichments of 2.6 to 5.9, respectively,
values that are in accord with the net hit-rate and net
enrichment values given above. Whether the use of
additional chemistry-space representations will con-
tinue to yield new compounds and similar enrichments
is unknown at this time. Nevertheless, the above

Figure 1. A graphical depiction of the number of compounds screened (grey bars) compared to the number of actives found
(black bars) plotted with respect to Y-axis (LHS of figure). The hit-rate (black line) for sets (including the union-set) of NNs based
on different chemistry space representations is also plotted with respect to the Y-axis (RHS of figure).
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example clearly demonstrates the advantage of explor-
ing multiple chemistry-space representations for poten-
tial active compounds.

3.3. Several Additional Targets. Studies were
carried out on a variety of other targets using the list-
based, HDNN searches of multiple chemistry-spaces.
Based on the type of assays that were developed
in-house, the viability of setting up a HTS campaign,
and the priority of the particular target in the thera-
peutic-area portfolio, different types of primary-screen-
ing campaigns were carried out. For instance, if a target
is not amenable to HTS or is considered to be of lower
priority to the therapeutic area under consideration, a
subset-based screening approach is typically adopted.
In such cases, a subset of compounds is usually obtained
from the PRCC through a dissimilarity-based proce-
dure34 and used as the initial screening set. In many
cases, additional subsets were derived in a similar
manner from other compound collections such as those
containing recently purchased compounds and those
containing focused, target-based libraries. In aggregate
these screens tend to ensure that a reasonably broad
coverage of chemistry space has been obtained. Based
upon the results obtained, HDNN searching is then
performed against the remainder of the PRCC not
screened initially, Uh c, to identify additional compounds
for follow-up screening.

In cases of high-priority targets amenable to HTS, a
screen of the entire PRCC is usually performed. In such
cases, HDNN searching and follow-up screening is based
entirely on either commercial sources, although ad-
ditional passes through selected regions of the PRCC
are sometimes carried out to identify borderline actives
and/or false negatives. For the purposes of the current
discussion, it does not matter what the source of the
screened compounds is, what assay the compounds are
screened against, what the goal of a particular screening
campaign was, or how many initial seeds were used as
probe compounds in an HDNN search. What matters
is the ability of the HDNN search algorithms and the
various chemistry-space representations to identify
more active compounds than would be identified using
any single chemistry-space representation and NN
search algorithm.

The results obtained for targets (2) through (6) are
summarized in Figure 2. Hit-rates for the primary
screen varied from 0.02% for the CNS Alzheimer’s target
to 4% for the antibacterial target, while those for the
corresponding follow-up screening of sets of compounds
obtained by HDNN searching varied from 0.7% to 17%,
respectively. The enrichment ratios varied from a
minimum of 3-fold to a maximum of 30-fold and overlap
between BCUT chemistry space nearest neighbors and
ChemLink FP based similar compounds varied from 10
to 15%.

Again, it is clear from the figure that there is a
considerable enrichment in the actives found by screen-
ing compounds obtained by HDNN searching, with
values ranging from ∼30 in the case of the CNS
Alzheimer’s target to a low of ∼3 for a CNS anxiolytic
target. In all cases, the value of the enrichment is
always at least three times greater than background.
This shows, not surprisingly, that HDNN searching
appears capable of identifying additional sets of com-
pounds for screening that contain a significantly higher
fraction of active compounds than is the case for primary
screening.

3.4. Nuclear Hormone Receptor Targets. A panel
of four different nuclear hormone receptors (NHR1,
NHR2, NHR3, NHR4) and two isoforms of NHR4 were
assayed for agonist and antagonist activity. The initial
screening set of compounds, Uh , was obtained from the
PRCC using our ‘standard′ dissimilarity-selection pro-
tocol.34 Some additional known NHR ligands were also
included in the screening set. The set of molecules
identified as hits (agonists and antagonists), Uh *, were
then used as queries/probes in multiple HDNN searches
of the unscreened portion of the PRCC, Uh c. As was done
before, the four subsets of compounds obtained from the
HDNN searches were aggregated by taking their set-
theoretic union, S ) S1 ∪ S2 ∪ S3 ∪ S4, and the resulting
set of compounds was screened yielding the “hit set,”
S*. The results are summarized in Figure 3 for each of
the NHR assays. The figure graphically shows a com-
parison of the background HTS hit-rate, Hbackground(Uh ),
given by the dark bars, to the enhanced follow-up hit-
rates of HDNN, Hfollow-up(S), given by the light gray
bars. In all cases, the results of follow-up screening are
superior to those obtained in the primary HTS, and the

Figure 2. A graphical depiction of the enrichment of hit-rates observed in five different assays. Hit-rates are given along the
Y-axis (LHS of figure) for initial screens of compounds (black bars) and for screens of compounds obtained by HDNN searches
(grey bars). Enrichments are given on the Y-axis (RHS of figure) and are indicated by the black line.

Hit-Directed Nearest-Neighbor Searching Journal of Medicinal Chemistry, 2005, Vol. 48, No. 1 245



overlap between the different methods was again very
small. The hit-rates of the primary screen for the panel
of assays varied from about one to nine percent and the
hit-rates for the corresponding follow-up directed screen
varied from about two to more than 20%, respectively,
with enrichments in the range of from slightly more
than one to more than five and an average enrichment
of slightly more than 2.5. In the latter case of the largest
enrichment, namely NHR3, this was due to the discovery
of a novel class of compounds that had potent agonist
activity.

3.5. Iterative HDNN Searching and Screening.
The question naturally arises as to whether a single
follow-up screen of ntotal compounds obtained by HDNN
searching provides higher enrichment, as well as better
coverage and more novel scaffolds than is obtained by
a number, nsearch, of follow-up screens of sets of ap-
proximately ntotal/nsearch compounds each obtained by
HDNN searches of multiple chemistry-space represen-
tations of the PRCC or any other compound collection.
If, rather than being radially dispersed about an initial,
clustered set of actives as is typically assumed, the
unknown actives lie along a “trend vector” in chemistry
space, a single HDNN search could miss a significant
number of potentially active compounds. Rather, even
if the actives are found, such a strategy is likely to
retrieve a large number of inactive compounds in order
to find most actives, lowering the enrichment. Such an
approach requires taking a very large search radius or
very large sample. On the other hand, iterative HDNN
searching can, in some cases, ameliorate this situation
by sequentially moving through chemistry space in
manner that is directed by the results of previous steps
in the process. Various iterative or sequential screening
strategies have been reported in the literature.37 The
application of these strategies vary depending on the
hit or lead information available and on the quality of
structural and biological information available.37-41

Figure 4 depicts a single such scenario for a particular
fungal cell-based assay. The results of two such cycles
of iterative, list-based HDNN searching for a fungal cell
assay following the first iteration of the primary screen
are shown. As was the case in all of the studies
presented in this work, multiple chemistry space NN

searches were carried out using the four (three BCUT
and one molecular fingerprint-based chemistry space
representations). About 800 compounds were screened
in each of two successive iterations, yielding 16 actives
for a hit-rate of about two percent and a 4.4-fold
enrichment above the primary screen in the second
iteration, and in the third iteration about 48 compounds
were found to be active. This yielded a six percent hit-
rate and a 13-fold enrichment above the primary screen.
Interestingly, the stepwise approach used here lead to
the identification of an interesting class of compounds
that were both novel and active.

4. Summary and Conclusions

The present work describes applications of HDNN
searching to active drug-discovery projects carried out
at Pharmacia in order to better focus follow-up screening
efforts. A persistent issue associated with HDNN
searches is their dependence on the chemistry-space
representation, as has been described in the literature
by a number of authors (vide supra). An important
consequence of this lack of invariance is that NN
relationships are not generally preserved; that is, two
compounds that are NNs in one chemistry-space rep-
resentation may not even be close to another. Although
it may be a bit unsettling, it is possible to use this lack
of invariance to advantage through the use of HDNN
searches of multiple chemistry-space representations of
the same compound collection. The results described in
this work clearly show that aggregating the results of

Figure 3. A graphical depiction of the enrichment of hit-rates observed in nine different NHR assays. Hit-rates are given along
the Y-axis (LHS of figure) for initial screens of compounds (black bars) and for screens of compounds obtained by HDNN searches
(grey bars). Enrichments are given on the Y-axis (RHS of figure) and are indicated by the black line.

Figure 4. A graphical depiction of the results of an iterative
searching and screening process for an antifungal target.
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such HDNN searches of multiple chemistry-space rep-
resentations provides a significant increase in the total
number of unique compounds. Moreover, because the
amount of overlap among the sets of compounds ob-
tained in the HDNN searches is surprising small, on
the order of only 10-15%, the number of compounds
obtained in the HDNN searches appears to scale ap-
proximately to the number of chemistry-space repre-
sentations employed, but more work will have to be done
before this can be conclusively demonstrated. Impor-
tantly, there is significant enrichment, which is nearly
constant, in hits over background in most cases. Fur-
ther, the set of assays examined in this work covers a
range of therapeutic-area projects, from CNS to anti-
fungal to antibacterial and contains both cell-based and
target-based assays, some of which are functional assays
and some of which are binding assays. Thus it appears,
at least from a pragmatic viewpoint, that the procedure
described here provides a practical method of finding
actives “surrounding” a set of hits obtained from a
primary HTS.
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